ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Chlorination and Evaporation Behaviors of PbO-PbCl2 System in Ar-Cl2-O2 Atmosphere
Hiroyuki MATSUURAFumitaka TSUKIHASHI
Author information
JOURNALS FREE ACCESS

2005 Volume 45 Issue 12 Pages 1804-1812

Details
Abstract

It is quite important to know the reactivity and behavior of Pb contained in steelmaking dust, or bottom ash and fly ash generated from municipal solid waste incineration process with chlorine. In the present study, chlorination and evaporation kinetics of PbO-PbCl2 melt have been investigated in Ar-Cl2-O2 atmosphere from 1023 to 1123 K. The weight of PbO specimen increased first and then decreased in Ar-Cl2-O2 stream during experiments, which phenomena mean that produced PbCl2 by PbO chlorination formed liquid oxychloride phase of PbO-PbCl2 system and then PbCl2 evaporated. Increase of partial pressure of chlorine increased the initial chlorination rate, however no effect on the latter evaporation rate was observed. Decrease of maximal weight gain of specimen and the slight increase of evaporation rate were observed with increasing partial pressure of oxygen. Activation energies of chlorination and evaporation of PbO-PbCl2 melt in the steady state were 35 kJ/mol and 156 kJ/mol, respectively. Evaporation rate of PbO-PbCl2 was also investigated at 1073 K in Ar-O2 atmosphere, however the change of evaporation rate with changing partial pressure of oxygen was within experimental error. Measured evaporation rate strongly depended on the composition of melt. Composition dependency of evaporation rate estimated from the activity of PbCl2 for the PbO-PbCl2 system generally represented the same trend, however the measured evaporation rate was larger than estimated one in the whole composition range. This result indicates that the formation of oxychloride melt affects the evaporation rate. Chlorination mechanisms and removal efficiency of Pb by chlorination have been discussed based on the present results.

Information related to the author
© 2005 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top