ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Finite Element Analysis of Thermal and Mechanical Behavior in a Slab Continuous Casting Mold
Xudong LiuMiaoyong Zhu
Author information
JOURNAL FREE ACCESS

2006 Volume 46 Issue 11 Pages 1652-1659

Details
Abstract

Three-dimensional (3-D) finite-element heat-transfer and thermal stress models were established to predict temperature, distortion and thermal stress in a continuous casting mold for steel slabs during operation. The effects of copper plate thickness, water slot depth, nickel layer and casting speed on temperature, distortion and thermal stress of copper plate were analyzed in detail. The results show that during casting, a maximum temperature, about 285°C, was found just near the meniscus of the centre of hot copper surface, and decreasing the thickness of copper plate and nickel layer, and increasing water slot depth are available in decreasing the copper plate temperature, therefore improving the mold life. The maximum distortion of wide and narrow copper faces are 0.245 mm and 1.01 mm, respectively, and it increases with increasing copper plate thickness and casting speed, and decreasing water slot. Nickel layer thickness has little effect on distortion and much effect on thermal stress.

Content from these authors
© 2006 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top