ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
The Ability of Slags to Absorb Solid Oxide Inclusions
Martin ValdezGeorge S. ShannonSeetharaman Sridhar
Author information
JOURNAL OPEN ACCESS

2006 Volume 46 Issue 3 Pages 450-457

Details
Abstract
The capture rate of solid oxide-inclusion particles from molten steel by molten slag depends on the rate of steel film drainage (which occurs at certain particle velocities), interfacial separation, and dissolution into the slag. In this study the capture of common oxide inclusions of sizes 2.5–200 µm and with velocities ranging from their terminal velocities to 0.3 m·s−1 approaching the interface between molten iron and slags with chemistries corresponding to ladle, tundish and mold slags are investigated. Calculations, based on a model available in literature, show that film drainage (when applicable) is rapid enough to be ignored. A sensitivity analysis based on the slag properties show that the interfacial energy between slag and inclusion is the most pertinent property that could hinder interfacial separation. However, the interfacial tension needed to achieve this has to be a minimum of 0.41 N/m which is unreasonable for the case of common oxide inclusions such as Al2O3, MgO, ZrO2 and MgAl2O4. The final step of dissolution was found based on studies with Confocal Scanning Laser Microscope experiments, to be significantly slower than the other steps. For a 100 µm particle, in the slags/inclusions investigated a correlation between slag viscosity, η [Pa·s] and super saturation, ΔC [kg·m2−3] with inclusion dissolution time, τ [s] was shown to be, τ=2.04·10−2/(C/η).
Content from these authors
© 2006 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top