ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Isothermal Precipitation Behavior of Copper Sulfide in Ultra Low Carbon Steel
Zhongzhu LiuMamoru KuwabaraYosihisa Iwata
Author information
JOURNAL OPEN ACCESS

2007 Volume 47 Issue 11 Pages 1672-1679

Details
Abstract
Copper and sulfur are typical residual elements or impurity elements in steel. Sufficient removal of them during steelmaking process is difficult for copper and costly for sulfur. Utilization of copper and sulfur in steel, especially in steel scrap, has been an important issue for a long period for metallurgists.
Copper and sulfur may combine to form a copper sulfide, which may provide a prospect to avoid the detrimental effects of copper and sulfur in steel. Unfortunately the formation mechanism of a copper sulfide in steel has not been completely clarified so far. In the present paper, solution treatment of samples containing copper and sulfur are firstly performed at 1623 K for 2.7×103 s followed by quenching into water. The samples are then isothermally heat-treated at 673 K, 873 K, 1073 K, 1273 K and 1373 K for different time followed by quenching into water again. The size, morphology, constituent and crystallography of sulfide precipitates in these samples are investigated by SEM and TEM equipped with EDS. Fine copper sulfides (less than 100 nm) are observed to co-exist with silicon oxide in samples even isothermally heat-treated at 1373 K for 1.44×104 s; Film-like copper sulfides are generally observed to co-exist with iron sulfide in all samples; Plate-like copper sulfides are observed especially in sample isothermally heat-treated at 1073 K for 1.44×104 s. The formation mechanisms of these copper sulfides have been discussed in detail.
Content from these authors
© 2007 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top