ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Vanadium Precipitation During Intercritical Annealing in Cold Rolled TRIP Steels
Fabien PerrardColin Scott
Author information
JOURNAL OPEN ACCESS

2007 Volume 47 Issue 8 Pages 1168-1177

Details
Abstract
Flat carbon steel manufacturers are currently developing new TRansformation Induced Plasticity (TRIP) steels as a response to strong demands for vehicle lightening and security reinforcement from the automobile sector. Compared to conventional high strength steels these advanced grades exhibit a very favourable compromise between strength and ductility and can therefore be produced in thinner, lighter gauge strips with equivalent functional properties. The excellent mechanical properties of TRIP steels are attributed to the high strain hardening coefficient generated by the progressive transformation of metastable retained austenite to martensite during plastic deformation. Further improvements in mechanical properties can be obtained by microalloying, especially with vanadium and nitrogen additions. In this paper we discuss the rather complex evolution of vanadium carbonitride V(C, N) precipitation during continuous annealing of cold rolled strip. Transmission electron microscopy (TEM) and selective chemical dissolution are used to characterise the precipitation state during interrupted intercritical annealing cycles. The experimental results are compared with calculations made using a recent kinetic precipitation model. We show that reasonable agreement can be achieved using a simple uncoupled model, however a complete description of the precipitation sequence during continuous annealing will require fully coupled kinetic models describing the interactions between cementite dissolution, the ferrite to austenite transformation and V(C, N) precipitation.
Content from these authors
© 2007 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top