ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Lowering Reduction Temperature of Iron Ore and Carbon Composite by Using Ores with High Combined Water Content
Taichi MurakamiTakeshi NishimuraEiki Kasai
Author information
JOURNAL FREE ACCESS

2009 Volume 49 Issue 11 Pages 1686-1693

Details
Abstract

The steel industry is facing two difficult and urgent tasks to reduce CO2 emissions and to use low-grade iron resources effectively. The utilization of an iron ore–carbon composite is one of the promising methods to solve the former. The latter is concerning to goethite ores such as Australian Marra Mamba and pisolite ores, which contain high concentration of combined water. In this study, the effect of combined water on the reduction behavior of the iron ore–coal composites at elevating temperature was examined under inert gas flow.
Below 1200 K, the reduction of iron oxide in Marra Mamba ore–coal and pisolite ore–coal composites proceeded faster than that in hematite ore–coal composite. It can be attributed to the larger specific surface area of the ores after decomposition of the combined water. Metallic iron also formed at lower temperature in the composites containing Marra Mamba and pisolite ores. The generation rate of CO gas from these composites showed the maximum value at approximately 1170 K; however, that from the hematite-coal composite gave no peak, because formed metallic iron could act as a catalyst for the gasification of carbon. These results indicate that the reduction of ores with high combined water concentration can proceed at lower temperature. Above 1373 K, however, the reduction rate of these ores in the composite significantly decreased due to a drastic decrease in the specific surface area of the ores and the formation of slag.

Content from these authors
© 2009 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top