ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
The Influence of Fuel Reactivity on Iron Ore Sintering
Roy R. LovelKeith R. ViningMark Dell 'amico
Author information
JOURNAL OPEN ACCESS

2009 Volume 49 Issue 2 Pages 195-202

Details
Abstract
An experimental program conducted at CSIRO showed that flame front speed (ffs) and sinter productivity increased with fuel reactivity (r) while sinter strength and fuel utilisation fell. The following relationship modelled flame front speed for a JSM style sinter mix over a fuel reactivity range of 1×10−5 g/g/s to 4×10−3 g/g/s:
ffs=0.2014·ln(r)+4.039 , R2=0.997
where ffs is flame front speed (cm/min) and r is fuel reactivity (g/g/s).
The CSIRO research concluded that rapid heating of the lower bulk density green granules and endothermic fuel gasification preceding the flame front are dominant factors that contribute to changes in flame front speed. While productivity was significantly increased, less time at temperature reduced sinter strength and gasification contributed to poor fuel utilisation under the standard sintering conditions used for the experiments. A range of changes to sinter mixes and sintering conditions are proposed to overcome the negative aspects of increased fuel reactivity while continuing to exploit the positives.
Content from these authors
© 2009 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top