ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Prediction of Precipitation Sequences within Grains in 18Cr–8Ni Austenitic Steel by Using System Free Energy Method
Yoshiaki TodaFujio Abe
Author information
JOURNAL FREE ACCESS

2009 Volume 49 Issue 3 Pages 439-445

Details
Abstract

The applicability of theoretical energy analysis to the evolution of microstructures in heat-resistant steels was explored by using the system free energy method to predict the precipitation of M23C6 and σ phase within grains in 18Cr–8Ni austenitic steels. The chemical free energy of Fe–C–Cr–Ni quaternary steel and the interfacial and elastic strain energies between austenitic (γ) matrix and the M23C6 and σ phase were estimated for the system free energy of microstructures wherein coherent or incoherent M23C6 and the incoherent σ phase precipitated within γ grains. By identifying the minimum-energy path through a determination of system free energy hierarchies, the precipitation initiation curves of precipitates in Fe–0.07C–18.95Cr–9.57Ni steel for temperatures between 823–973 K were theoretically predicted. The calculated curves agreed well with experimental results for Type 304H austenitic steels; this suggests that the system free energy method is suitable for predicting the evolution of microstructures in heat-resistant steels.

Content from these authors
© 2009 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top