ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
A Molecular Dynamics Study of Thermodynamic and Kinetic Properties of Solid–Liquid Interface for Bcc Iron
Yusuke WatanabeYasushi ShibutaToshio Suzuki
Author information

2010 Volume 50 Issue 8 Pages 1158-1164


Molecular dynamics simulations have been performed to give an estimate on the solid–liquid interfacial properties of bcc iron, namely the kinetic coefficients and solid–liquid interfacial energy. The kinetic coefficients for different orientations were estimated from the propagation velocity of planar solid–liquid interfaces. The anisotropy of kinetic coefficients, μ, was confirmed to be μ(100)(110), which is similar to the literatures using other interatomic potentials. Moreover, growing and shrinking behavior of the freestanding spherical crystal and semi-spherical crystal on the substrate in the undercooled liquid was examined. There is a critical temperature dividing shrink or growth of both the freestanding spherical crystal and semi-spherical crystal on the substrate. The solid–liquid interfacial energy was then estimated from Gibbs–Thomson relation in the critical temperature as a function of the inverse of crystal radius.

Information related to the author
© 2010 by The Iron and Steel Institute of Japan
Previous article Next article