ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Behavior of Non-metallic Inclusions in Steel during Hot Deformation and the Effects of Deformed Inclusions on Local Ductility
Ken-ichi YamamotoHideaki YamamuraYoshihiro Suwa
Author information
JOURNALS FREE ACCESS

2011 Volume 51 Issue 12 Pages 1987-1994

Details
Abstract

In order to clarify both the behavior of non-metallic inclusions during hot deformation and the effects of non-metallic inclusions on the local ductility of steel with aluminum deoxidized and containing lower sulfur content at about 0.002–0.01% were investigated. Both the commercial-quality 440 MPa-class plain carbon steel and super ultra-low carbon steel were studied. To investigate the distribution, morphology, and chemical composition, along with the change in such characteristics, during the hot deformation of non-metallic inclusions, thermo-mechanical treatment with a compression test was carried out. Moreover, the reduction of area with the tensile test species, which refers to the local ductility of steel, was examined, and the effect of the distribution, morphology, and chemical compositions of both the Al2O3 inclusions and the elongated MnS inclusions were studied.
Consequently, metal sulfur content of higher than 60 ppm and elongated MnS inclusions of over 10 regarding the aspect ratio were observed. In addition, the elongated MnS inclusions had a stronger influence on local ductility than the smaller Al2O3 inclusions, and drastic effects on the nucleation of voids. Thus, a fracture is most likely to be initiated by void formation at the interface of the elongated MnS inclusions and metal matrix notched by MnS, and thus would experience coalescence in accordance with a brittle fracture in the soft MnS inclusions. The local ductility in steel including elongated MnS inclusions is small because the fracturing and deformation of metal are most likely to be related to the elongated MnS inclusions.

Information related to the author
© 2011 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top