ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Influence of Carbon Segregation to Dislocations on Thermal Desorption Spectrum of Hydrogen in Medium Carbon Martensitic Steels
Lin ChengMasato EnomotoDaisuke HirakamiToshimi Tarui
Author information
JOURNAL OPEN ACCESS

2013 Volume 53 Issue 1 Pages 131-138

Details
Abstract
A computer program was developed to simulate competitive hydrogen trapping and carbon segregation to the trap site which are often referred to site competition, and the spectra of medium carbon martensitic steels, which were analyzed previously assuming a single trap energy, were re-examined. The McNabb-Foster equations in which carbon segregation was treated as trapping to the defect site were solved simultaneously incorporating a phenomenological interaction coefficient between hydrogen and carbon within the trap site. Assuming that the primary trap site of hydrogen was dislocation, experimental TDA peaks, 50–100°C lower than those of heavily deformed pure iron, were reproduced well both in height and width with a narrow range of the interaction coefficient no matter hydrogen was charged at room temperature or high temperature, i.e. prior to martensitic transformation. Due to relatively faster segregation kinetics of carbon the peak temperature does not appear to be sensitive to the carbon content or the carbon occupancy prior to thermal desorption analysis in medium carbon steels.
Content from these authors
© 2013 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top