ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Evaluation of Stress and Strain Measurement Accuracy in Hydraulic Bulge Test with the Aid of Finite-element Analysis
Kengo Yoshida
Author information
JOURNAL OPEN ACCESS

2013 Volume 53 Issue 1 Pages 86-95

Details
Abstract
Numerical simulations of the hydraulic bulge test are carried out by the implicit static finite-element method. The sheet specimen is characterized as a rate-independent elastoplastic material with a power-law hardening rule. The stress and strain relationship of the specimen is evaluated from the internal pressure and nodal coordinates obtained in the finite-element simulation of the hydraulic bulge test. Varying the gauge lengths of the spherometer and extensometer and the ratio of the initial thickness to the diameter of the specimen, their influences on the estimated stress and strain are investigated. By comparing the estimated stress-strain relationship with that of exact input data, the stress and strain measurement accuracy is assessed. Furthermore, the stress state at the apex is examined for orthotropic specimens and is found to deviate by 1–5% from the equi-biaxial stress state.
Content from these authors
© 2013 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top