2013 Volume 53 Issue 8 Pages 1315-1319
For this study, we measured surface tension of Fe–C and Fe–C–O melts accurately under controlled carbon and oxygen activities using an oscillating droplet method with an electromagnetic levitator (EML). The results are summarized as follows. The carbon activity has no influence on the surface tension of Fe–C melt at temperatures of 1823–2023 K under oxygen partial pressure of 10–10 Pa. For Fe–C–O melts, the carbon activity has no influence on the surface tension at a constant oxygen partial pressure of 10–7 Pa and temperatures of 1873–1973 K. It is noteworthy that oxygen activity is reduced by carbon in the melt because of the negative interaction between oxygen and carbon. Considering the interaction, the surface tension of the Fe–C–O melts was formulated as a function of carbon and oxygen concentrations and temperature.