ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Recrystallization Behavior and Texture Evolution in Severely Cold-rolled Fe-0.3mass%Si and Fe-0.3mass%Al Alloys
Miho TomitaTooru InagumaHiroaki SakamotoKohsaku Ushioda
Author information

2017 Volume 57 Issue 5 Pages 921-928


The effect of Si and Al additions on the recrystallization behavior of severely cold-rolled Fe by 99.8% reduction was investigated in comparison with a previous study on pure Fe.6) In Fe-0.3mass%Si alloy, recrystallized grain with {411}<011> and {411}<148>preferentially nucleated at an early stage of recrystallization, and the texture did not changed substantially with the progress of recrystallization, which supports the oriented nucleation theory. The {411}<148> texture significantly increased at the expense of recrystallized grains with {100}<023> and ND//<111> during normal grain growth. In Fe-0.3mass%Al alloy, dynamic recovery during heavy cold-rolling and substantial subgrain growth during low temperature annealing (350°C) occurred, similar to the case of pure Fe and different from that of Fe-0.3mass%Si alloy. This is presumably because of the subtle influence of Al addition on cross-slip frequency and smaller solute-dislocation/vacancy interaction as compared with Si addition. Furthermore, at the early stage of recrystallization, the tendency of oriented nucleation became weaker in Fe-0.3mass%Al alloy than that in Fe-0.3mass%Si alloy. With the progress of recrystallization, {100}<012> and {111}<112> orientations intensified. In the following normal grain growth, {100}<012> texture intensified. However, the change in the texture during growth cannot be explained only by the size effect. A rigorous grain growth simulation model is required to explain the experimental facts by considering the dependency of grain boundary mobility and energy on grain boundary characteristics.

Information related to the author
© 2017 by The Iron and Steel Institute of Japan
Previous article Next article