ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Casting and Solidification
Effect of Solidification Pressure on Interfacial Heat Transfer and Solidification Structure of 19Cr14Mn0.9N High Nitrogen Steel
Zhouhua JiangHongchun ZhuHuabing Li Guohai LiuPengbo WangJunhui ZhuShucai ZhangHao Feng
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2018 Volume 58 Issue 1 Pages 107-113

Details
Abstract

The effect of solidification pressure (0.5, 0.85 and 1.2 MPa) on heat transfer between ingot and mould was investigated with the measurement of cooling curves and calculation of heat transfer coefficient. Combined with cooling rate, temperature gradient and local solidification time (LST), the influence of pressure on solidification structure of 19Cr14Mn0.9N was revealed by macrostructure observation. The calculation results of heat transfer coefficient, obtained by the Beck-Nonlinear estimation technique, indicate that increasing solidification pressure obviously enhances heat transfer at the ingot/mould interface. And higher solidification pressure is benefit to increase cooling rate and temperature gradient of ingot. Meanwhile, increasing solidification pressure considerably suppresses nitrogen gas pore, and reduces the whole area of dispersing porosity and shrinkage, which is favorable to obtain a sound ingot. With the solidification pressure increasing from 0.5 to 1.2 MPa, the columnar zone is lengthened, the columnar-to-equiaxed transition (CET) position gradually moves to the ingot center, and both dendritic arm spacing (λ1 and λ2) and local solidification time (LST) gradually decrease. The solidification structure is significantly refined and compressed under higher solidification pressure.

Content from these authors
© 2018 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top