ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Mechanical Properties
Optical Microscopy-Based Damage Quantification: an Example of Cryogenic Deformation of a Dual-Phase Steel
Nao UehataMotomichi Koyama Shusaku TakagiKaneaki Tsuzaki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2018 Volume 58 Issue 1 Pages 179-185

Details
Abstract

We evaluated the availability of an optical-microscopy-based damage quantification method in a ferrite/martensite dual-phase steel, and interpreted the obtained results toward screening damage evolution behavior under various test conditions. In this study, we employed this method for tensile deformation at 20, −100, and −180°C to analyze the temperature dependence of damage evolution in cryogenic regime as a case study. The damage evolution behavior was classified into regimes of damage nucleation, damage arrest, and damage growth to fracture, irrespective of the deformation temperature in a cryogenic temperature range. Coupled with some high-resolution observations, the damage nucleation and damage arrest sites were identified to be martensite and ferrite, which are common regardless of the deformation temperatures. This indicates that ferrite acted as a damage arrest site even at −180°C. However, a critical strain for damage growth to fracture decreased drastically by decreasing the temperature to −180°C. The distinct reduction in the critical strain is attributed to the transition of ferrite cracking mode from ductile to brittle mechanisms.

Content from these authors
© 2018 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top