2020 Volume 60 Issue 10 Pages 2266-2275
In this study, a new generation automobile Medium-Mn steel (0.1C-5Mn-Fe) was welded by fiber laser and regional thermal cycle experiment was performed on a thermo-mechanical simulator. The microstructure, microhardness, and tensile properties of both base metal (BM) and simulated heat-affected zone (HAZ) were investigated. The results show that the peak temperature (PT) of different regions in HAZ results in differences of microstructure and mechanical properties. The microstructural analysis indicates that BM is comprised of an ultrafine-grained (UFG) duplex microstructure of ferrite and austenite. The change of PT has significant influence on microstructure and mechanical properties of HAZ. At the PT of 1350°C, the microstructure consists mainly of martensite and austenite film. At the PT of 900°C, the microstructure consists mainly of martensite packet with high density dislocations. At the PT of 700°C, the microstructure corresponding to the inter-critical HAZ (ICHAZ) consists of ferrite, austenite, and carbides. At the PT of 500°C, the microstructure corresponding to the sub-critical HAZ (SCHAZ) consists of ferrite and austenite. The volume fraction of austenite and ferrite increased sharply and the content of martensite decreased with decreasing PT. Tensile strength and yield strength decreased with decreasing PT due to martensite content reduction. Static toughness of ICHAZ is 343.4 MJ/m3 due to good balance of ductility and strength of metastable austenite. CGHAZ has the lowest static toughness of 196.4 MJ/m3 due to the lower ductility for martensite.