ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Casting and Solidification
Numerical Analysis of Effect of Operation Conditions on Bubble Distribution in Steel Continuous Casting Mold with Advanced Bubble Break-up and Coalescence Models
Weidong YangZhiguo Luo Yingjie GuZhiyuan LiuZongshu Zou
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 10 Pages 2234-2245

Details
Abstract

Argon bubbles are usually injected into steel continuous casting mold to prevent the clogging of submerged entry nozzle (SEN), but some bubbles may be entrapped to form defects in the final slab. In order to provide a reference for improving the quality of steel, a mathematical model based on the Eulerian-Lagrangian approach with advanced bubble break-up and coalescence models was established to study the effect of operation conditions on bubble distribution in a steel continuous casting mold. A bubble break-up model based on a daughter bubble fraction, which is suitable for the continuous casting system, was considered. The mathematic model was validated by comparing of the size and number of captured bubbles with the plant measurements of previous work. The result shows that argon gas injection has obvious effect on the flow pattern in the upper recirculation zone of the mold. In the upper recirculation zone, the bubbles mean diameter decreases and the bubble number increases with increasing casting speed, and both of the bubble size and number increase with the increase of gas flow rate. From the result, it can be found that the number and diameter of bubbles arriving at the advancing solidified shell region increase with increasing casting speed. In addition, the increase of gas flow rate causes more bubbles arriving at the advancing solidified shell region, but has little effect on the size of bubbles.

Content from these authors
© 2020 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top