ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Steelmaking
Inclusion Characteristic in Tinplate Steel in RH Refining and Kinetics Limitation of Calcium Transfer by Refining Slag
Xiaoao LiNan Wang Min ChenRuiqi Zeng
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 11 Pages 2446-2454

Details
Abstract

The characteristics of inclusions including composition, morphology, number, and size in tinplate steel were studied by industrial experiments and thermodynamic calculations during the RH refining process. The results indicated that two types of Al2O3 inclusions including cluster and single-particle are generated at first after Al addition. With the slag-metal and refractory-metal reactions, Al2O3 inclusions, CaO·Al2O3 inclusions, MgO·Al2O3 spinel inclusions, and CaO–MgO–Al2O3 ternary system inclusions are found in the middle of RH refining. Only single-particle Al2O3, CaO·Al2O3 inclusions with high melting point, and CaO–MgO–Al2O3 ternary system inclusions are found at the end of RH refining. From Al addition to the end of RH refining, the total number of inclusions showed a decreasing trend and the proportion of the number density decreased by 70%. About 62% of inclusions are smaller than 10 µm at the end of RH refining, which are difficult to be removed from the liquid steel. The mass transfer of Ca from the refining slag to the liquid steel has a significant effect on the content of [Ca] in liquid steel. Al2O3 inclusions generated in liquid steel can only be modified to CaO·Al2O3 inclusions in the present RH refining time. Aiming to generate 12CaO·7Al2O3 inclusions quickly, moderate calcium treatment as a supplementary measure for refining slag is recommended to modify inclusions during the RH refining process.

Content from these authors
© 2020 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top