ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Determination of Thermal Diffusivity/conductivity of Oxide Scale Formed on Steel Plate by Laser Flash Method through Thermal Effusivity Measurement by Transient Hot-strip Method
Rie Endo Hiroki HayashiMu LiMegumi AkoshimaHikaru OkadaHiroshi TaneiMiyuki HayashiMasahiro Susa
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 12 Pages 2773-2779

Details
Abstract

Thermal diffusivity and conductivity were determined for oxide scale formed on steel plate by the laser flash method in combination with thermal effusivity measurement by the transient hot-strip method. The thermal effusivity measurement technique was confirmed by measurement of silica glass, and the value was determined to be 2.52 kJ m−2 s−1/2 K−1 for the oxide scale formed on an ultra-low-carbon steel plate by oxidation in air at 900°C for 3600 s. Thermal diffusivity measurements were also conducted for 1 mm-thick steel plates oxidized in air at 900°C for 770–3600 s by the laser flash method. The apparent thermal diffusivity of samples provided the thermal diffusivity of the oxide scale based on three-layered analysis by inputting the measured value of the thermal effusivity. The measured values suggested that no significant boundary resistance exists between the oxide scale and the steel plate. The thermal conductivity and diffusivity of the oxide scale were calculated to be 1.6 W m−1 K−1 and 4.0 × 10−7 m2 s−1, respectively.

Content from these authors
© 2020 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top