ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Ironmaking
Thermodynamic Properties and Viscosities of High-Titanium Slags
Kai GaoKexin Jiao Jianliang ZhangDianyu E
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 9 Pages 1902-1908

Details
Abstract

The influence of TiO2, binary basicity and Al2O3/TiO2 ratio on the heat capacity, enthalpy and slag fluidity of CaO–SiO2–MgO–Al2O3–TiO2-based slag at 1693 K, 1723 K, and 1753 K (1420°C, 1450°C, and 1480°C) was investigated in this work. From the calculation results, it was found that the heat capacity of the slag increased with the increasing of TiO2 content and the Al2O3/TiO2 ratio and with the decreasing of basicity in the experimental temperature range. Enthalpy change increased with the increasing Al2O3/TiO2 ratio and the decreasing of TiO2 content. With the increasing of basicity, the slag temperature rises slightly and the viscosity decreases along with it. Additionally, the larger the basicity, the smaller the viscosity fluctuation under heat decrement. Therefore, a proper increase in basicity contributes to reduce viscosity fluctuation, for the current slag system, the appropriate basicity should be 1.15–1.20. Besides, the fluctuation of the temperature reaches a small value around the Al2O3/TiO2 ratio is 0.6, and in metallurgical production, the heat input should be adjusted in time according to titanium content charge fluctuations, thus ensuring good fluidity and an adequate reaction between the slag and metal. The above experimental results can provide a reference for ironmaking enterprises using more vanadium–titanium magnetite ore.

Content from these authors
© 2020 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top