2021 Volume 61 Issue 10 Pages 2605-2612
The evolution of oxide inclusions with different concentrations of Al2O3 in tire cord steel during hot rolling was investigated by industrial trials using an automatic scanning electron microscope. Changes in chemical composition, particle size, and number density of oxide inclusions in the entire hot rolling process were studied with systematical samplings. The maximum diameter of most inclusions is less than 5 µm, a value independent of the Al2O3 concentration; the number density of oxide inclusions increases with the increase of Al2O3, when this concentration is lower than 50%. The average chemical composition of oxide inclusions changed little during the hot rolling process when the concentration of Al2O3 was approximately 35%. Deformation and fracture of oxide inclusions occur simultaneously during the entire hot rolling process causing changes in the average diameter, number density and area fraction. Higher deformation in oxide inclusions was observed when the concentration of Al2O3 was in the range of 20%–25%. This behavior was explained due to a decrease in their melting point.