ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Mechanical Properties
Effects of Microstructural Anisotropy on the Dwell Fatigue Life of Ti-6Al-4V Bar
Kenichi MoriShohtaroh HashimotoMitsuo Miyahara
Author information

2021 Volume 61 Issue 10 Pages 2666-2676


Cyclic fatigue, dwell fatigue and crack growth properties were evaluated in the axial direction (L) and transversal direction (T) of Ti-6Al-4V forged round bar. In the SN curve where the stress is normalized by 0.2% proof stress, the cyclic fatigue life in the L/T direction is almost the same, whereas the dwell fatigue life in the T direction is as short as 1/5. In dwell fatigue, ductile fracture occurred when the maximum stress was higher than 95% of 0.2% proof stress. At stresses below 870 MPa, the inelastic strain range and the strain increase rate in the T direction gradually decreased with decreasing stress, and the fracture mode transitioned to that with fatigue crack growth. The gradual change must have been caused by the mixture of anisotropic microtexture regions. At stresses below 825 MPa, the fracture mode transitioned rapidly in the L direction, where the soft oriented microtexture regions were dominant. In the low ΔK region (≤15 MPa√m), the crack growth rate in the axial direction was about twice that in the radial direction of the bar. The shorter dwell fatigue life in the T direction under stress conditions showing fatigue crack growth was explained by the significantly earlier crack initiation compared to that in cyclic fatigue and the faster crack growth along the microtexture in the axial direction of the bar.

Fullsize Image
Information related to the author
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
Previous article