ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Toward Suppression of Hydrogen Absorption and Hydrogen Embrittlement for Steels"
Effect of Environmental Factors on Hydrogen Absorption into Steel Sheet under a Wet-dry Cyclic Corrosion Condition
Shinji Ootsuka Eiji TadaAzusa OoiAtsushi Nishikata
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 4 Pages 1229-1235

Details
Abstract

The effects of temperature and chloride deposition on hydrogen absorption into steel were evaluated during wet/dry cyclic corrosion using a temperature-compensated hydrogen absorption monitoring system based on the electrochemical hydrogen permeation method. Hydrogen absorption into steel was detected through the measurement of hydrogen permeation currents during the wet periods under the wet/dry cyclic corrosion. The enhancement of hydrogen absorption was mainly caused by the changes in the solution chemistry during the wetting and drying periods, with a decrease in pH due to the hydrolysis reaction of Fe3+ at high Cl concentration. Hydrogen absorption into steel increased with increasing temperature and chloride deposition. The reasons for the increment of hydrogen absorption are considered that enhancement of the hydrogen evolution reaction with temperature and that the corrosion potential shifted to less noble by increase in the electrolyte thickness with increasing chloride deposition. Based on these results, the amount of absorbed hydrogen map effected by these factors under atmospheric corrosion environment was described.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top