ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Modelling of Defluidization of ZrO2/Fe Particles in High Temperature Gas Fluidization: Influence of Fe Contents
Jianbo ZhangZhan Du Chuanlin FanFeng Pan
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 7 Pages 2034-2040

Details
Abstract

The contents of Fe on the surface of iron ore fines had a great influence on the fluidization behavior during high temperature fluidized bed reduction, which would cause defluidization when exceeding a critical value. In this paper, simplistically, ZrO2/Fe particles with different Fe contents on the surface were used as raw materials. Through modification of previous models, a quantitative relationship was established to predict the defluidization temperature of ZrO2/Fe particles with different Fe contents, and the calculation results corresponded well with the experimental data obtained from the defluidization test. The model in this paper firstly explained the dependence of defluidization behavior on the contents of Fe in high temperature gas fluidization, and it could well predict the metallization degree of commercial iron ore fines when defluidization occurred during fluidized bed reduction. Therefore, the model could be used as a reference to select suitable operating conditions for treating fine iron oxide particles in high temperature gas fluidization processes, such as direction reduction and chemical looping.

Comparisons of calculated results with experimental data at different temperatures, ug=0.2 m/s. Fullsize Image
Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top