ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Frontier in Characterization of Materials and Processes for Steel Manufacturing"
Extraction of Rare Earth Metal Oxide Inclusion Particles in Steel
Kouki MaedaShigeru UedaRyo Inoue
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 5 Pages 904-911

Details
Abstract

The conventional recovery technology is not economically viable due to the low rare metal concentration in industrial scraps. It is expected that iron- and steelmaking process can recover rare metals as a high-concentration ore substitute. For efficient enrichment of rare earth metal (REM) in this process, the establishment of the thermodynamic values related to REM deoxidation of molten iron is required. To obtain precise thermodynamic data, the concentration of elements solved in the metal sample should be determined separately from that in the inclusions, which is suspended in molten iron. Therefore, a stable extraction method for REM oxide in iron was investigated.

From the dissolution behavior of Sm2O3, Nd2O3 and Dy2O3 reagents in various eluents, 2 v/v% triethanolamine-1 w/v% tetramethylammonium chloride-methanol (2%TEA) is most suitable for the extraction of REM oxide. From the analysis using SEM-EDX and SEM-WDX, REM oxide in Fe-0.2 mass% REM alloy was identified as REM2O3 containing a small amount of MgO and FeO. From the relationships between the total O concentration and the insoluble O concentration calculated from insoluble REM concentration, the REM oxide inclusions in Fe-REM alloy could be extracted precisely by the electrolysis with 2%TEA.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top