ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Ironmaking
Large-scale VOF/CFD-DEM Simulation of Blast Furnace Hearth Dynamics
Tim Marinus Johannes NijssenJohannes Alfonsius Maria KuipersJan van der StelAllert Tjipke AdemaKay Arnout Buist
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 6 Pages 1146-1158

Details
Abstract

In this work, large-scale simulations of the blast furnace hearth are presented, conducted using a model combining Computational Fluid Dynamics, the Volume of Fluid method, and the Discrete Element Method. Using a 5 m diameter, full-3D geometry, the influence of burden weight, bi-disperse packing, and blocked tuyeres on the liquid and solids flow within the hearth are investigated. Horizontal and vertical porosity profiles are presented, and the influence of the dynamic liquid level on the state of the deadman is evaluated. The liquid iron flow during tapping is visualised, and the influence of a coke-free space on the flow pattern is analysed. The magnitude of the circumferential flow through the corner of the hearth is analysed, and found to decrease with increasing burden weight pressure and coke diameter in the bed centre. A significant influence of the dynamic deadman on the liquid flow pattern is found, especially in case of a floating deadman. In addition to the liquid flow, the solid coke flow towards the raceways is analysed. Two pathways for coke particles towards the raceway are uncovered, one path through the actively flowing layer above the deadman, and a second path moving through the deadman and entering the raceways from below. The balance between these two mechanisms was found to change during the tapping cycle. Lastly, implementations for heat and dissolved carbon mass transfer are presented, and demonstrated using a full-scale 10 m hearth simulation. Additional closures for heat and mass transfer rates are required, but the current model is found in good shape for future work.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top