ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Influence of Temperature on Dephosphorization at Lower Basicity and Lower Temperature Based on Industrial Experiments and IMCT
Han SunJian Yang Runhao ZhangWenkui Yang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 6 Pages 1078-1090

Details
Abstract

In the present work, the dephosphorization experiments by using new double slag converter steelmaking process (NDSP) has been carried out in a 180 ton top-bottom combined blowing converter under the low temperature range of 1345–1450°C and low basicity of about 1.50. With increasing dephosphorization endpoint temperature, the dephosphorization ratio, the P2O5 content and phosphorus distribution ratio logLP first increase and then decrease. The apparent equilibrium constant of dephosphorization reaction first increases and then decreases, and the viscosity of dephosphorization slag decreases. The average area fraction of the P-rich phase first increases and then decreases, and those of the matrix phase and the Fe-rich phase increase and decrease, respectively. The morphologies of P-rich phase change from small oval shapes to long strips, then to massive shape, and further to irregular small blocks. The value of the coefficient n in nC2S–C3P of P-rich phase first decreases from 4.8–6 to 2–4.8, then increases to 6–20. Based on ion-molecule coexistence theory (IMCT), C2S and C3P have the strongest affinities in the calcium silicate and calcium phosphate in the dephosphorization slag, respectively. Increasing the enrichment degree of C2S–C3P in the dephosphorization slag is conducive to improving the phosphorus enrichment capacity of the dephosphorization slag and dephosphorization ratio of hot metal. The changing trends of phosphorus enrichment degree in dephosphorization slag characterized by the measurement results of slag phases and the calculation results of IMCT are well consistent, indicating that the IMCT calculation results can correctly express the phosphorus enrichment degree of dephosphorization slag.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top