2022 Volume 62 Issue 7 Pages 1450-1460
In the current study, the movement of the vortex center position and the prediction of the maximum velocity at the top surface with different casting parameters were studied in a steel continuous casting slab strand using the Eulerian–Eulerian approach. One, two, and three vortexes were generated under the flow pattern of single roll flow, double roll flow, and complex roll flow, respectively. The vortex center position migrated from the meniscus to the submerged entry nozzle in the upper recirculation zone and moved downward along the mold height in the lower recirculation zone with the increasing of the casting speed, respectively. With the increasing of the argon flow rate, the movement trajectory of vortex center was opposite to the increasing of the casting speed. The vortex center position moved from the meniscus to the submerged entry nozzle with the outport angle of submerged entry nozzle increased and migrated from the submerged entry nozzle to the meniscus with mold width increased. In addition, nonlinear fitting for the maximum velocity of the molten steel at the top surface under different cast parameters was performed, and the regression equation was verified by nail board measurements The on-line prediction of the maximum velocity at the top surface was realized.