ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Casting and Solidification
Prediction Study on Vortex Center Position and Surface Velocity in a Steel Continuous Casting Slab Strand Using Mathematical Modeling
Haichen Zhou Haibo LiXiaoxuan DengChenxi JiGuoliang LiuYanzhao LuoLiujie YaoJianping Yang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 7 Pages 1450-1460

Details
Abstract

In the current study, the movement of the vortex center position and the prediction of the maximum velocity at the top surface with different casting parameters were studied in a steel continuous casting slab strand using the Eulerian–Eulerian approach. One, two, and three vortexes were generated under the flow pattern of single roll flow, double roll flow, and complex roll flow, respectively. The vortex center position migrated from the meniscus to the submerged entry nozzle in the upper recirculation zone and moved downward along the mold height in the lower recirculation zone with the increasing of the casting speed, respectively. With the increasing of the argon flow rate, the movement trajectory of vortex center was opposite to the increasing of the casting speed. The vortex center position moved from the meniscus to the submerged entry nozzle with the outport angle of submerged entry nozzle increased and migrated from the submerged entry nozzle to the meniscus with mold width increased. In addition, nonlinear fitting for the maximum velocity of the molten steel at the top surface under different cast parameters was performed, and the regression equation was verified by nail board measurements The on-line prediction of the maximum velocity at the top surface was realized.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top