ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Numerical Simulation of Macrosegregation in a Continuous Casting Mold with Electromagnetic Stirring
Kengo Kihara Nobuhiro OkadaShun SaitoKento Kawashima
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 9 Pages 1862-1873

Details
Abstract

Negative segregation beneath the surface of the slab is generated by the flow of molten steel in continuous casting. Negative segregation of austenite stabilizing elements such as Ni and C results in the formation of delta ferrite, which can cause cracks near the slab surface in austenitic stainless steel. In the current study, we developed a numerical simulation model to predict negative segregation in the continuous casting process. The model used an effective distribution coefficient that is dependent on the solidification rate and the liquid velocity in front of a solidifying shell. A comparison of the numerical simulation and the experimental results for the solidification in a crucible with a rotating and cooling pipe indicated the validity of the proposed numerical simulation model. Additionally, the numerical simulation results of continuous casting for austenitic stainless steel showed that the maximum degree of negative segregation occurred near the slab corners when casting at high speed with electromagnetic stirrer. The degree and location of negative segregation in the numerical simulation were comparable to those obtained from EPMA and Spark-OES analysis of slab samples. These results indicated that the proposed simulation model enables accurate prediction of negative segregation beneath the slab surface in continuous casting and is useful for the optimization of continuous casting process. The negative segregation was caused by the molten steel flow in front of a solidifying shell. Consequently, the results from simulation without EMS or at low casting speeds showed that negative segregation was suppressed.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top