ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Weld Formation, Microstructure and Mechanical Properties of Q235 Weldments Fabricated by Double-pulsed Submerged Arc Welding
Zhenmin WangXuyan LiHaipeng LiaoHuimin XieQin ZhangJiyu Tian Xiangmiao Wu
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 63 Issue 10 Pages 1758-1768

Details
Abstract

The large heat input of submerged arc welding (SAW) usually leads to coarse grains, reducing the mechanical properties of weldments. In this work, double-pulsed (DP) current waveform modulation technology was innovatively applied in SAW. The SAW experiments with/without DP current were performed to investigate the comprehensive effect of low frequency on the welding process stability, weld formation, microstructure and mechanical properties of the Q235 weldments. The results demonstrated that DP current significantly improved welding stability, and high-quality weldments with slight undercuts and spatters, without welding collapse, cracks or hump were obtained by DP-SAW. The low frequency had a significant effect on the spacing between each fish scale pattern. In addition, the microstructure of weld metal mainly consisted of proeutectoid ferrite, acicular ferrite, fine-grained ferrite and slight pearlite, while the microstructure of the heat-affected zone consisted of proeutectoid ferrite and widmanstatten. The stirring action of DP-SAW on the molten pool refined the weld microstructure, which improved the mechanical properties of weldments. With the optimal low frequency of 4 Hz, the microhardness, tensile strength and impact toughness of DP weldment were 188.2 HV, 537.9 MPa and 81.1 J/cm2 respectively, which were enhanced by 11.1%, 8.1% and 9.8% compared with that of SP weldment respectively. The obtained results provide a new idea for improving the weld quality of submerged arc welding.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top