ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Flow Curve of Superalloy 718 under Hot Forming in a Region of γ” Precipitation
Hyung-Won Park Kyunghyun KimHyeon-Woo ParkAkira YanagidaJun Yanagimoto
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 63 Issue 2 Pages 354-365

Details
Abstract

This study aims to formulate a constitutive equation to accurately determine the flow stress of superalloy 718 for effective production of gas turbine disks. A hot-compression test with superalloy 718 at temperatures ranging from 900 to 1000°C, a reduction rate of 67%, and strain rates of 0.1, 1, and 10 s−1, respectively, was conducted to analyze the flow stress in the dynamic precipitation region. An accurate flow stress curve was obtained for each strain rate and initial temperature. The flow curves obtained at a deformation temperature of 900°C and strain rates of 0.1 and 1 s−1, represent a combination of work-hardening and dynamic recovery. Dynamic recrystallization (DRX) behavior was observed under other deformation conditions. At a deformation temperature of 950°C and each strain rate, the strain at the onset of DRX (εc) decreases, and DRX tends to occur rapidly. In addition, the steady-state stress at a strain rate of 1 s−1 was greater than that at a higher strain rate of 10 s−1. The lowest steady-state stress among all the experimental conditions was observed at a strain rate of 10 s−1. This may be attributed to the role of nucleation sites, precipitation hardening caused by dynamically precipitated γ” phases at approximately 950°C and a strain rate of 1 s−1, and dynamic softening effects due to significant heat generated by deformation at a strain rate of 10 s−1. A new constitutive equation for the generalized flow curve of superalloy 718 was obtained by considering these metallurgical phenomena.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top