ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Discrete Liquid Flow Behavior in a 2D Random Packed Bed
Venkat Arunchaitanya Gadi Govind Sharan Gupta
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 63 Issue 5 Pages 810-821

Details
Abstract

In many systems, the liquid flows in discrete rivulet/droplet form rather than continuous in non-wetting or low liquid flow rate conditions. A discrete liquid flow (DLF) theory has been used by a few researchers to describe these systems such as Ironmaking blast furnace. A few investigators have applied the discrete flow of liquid in structured packing where the particles are arranged in a particular pattern where void size and shape are fixed. However, in the real world, the packing system is random, for which the DLF theory has not been extended/verified. Also, DLF theory has not been verified for 2D structural packing in the absence of gas flow rigorously. In this article, this theory is not only validated for structural packing in the absence of gas flow but also extended and validated for 2D random packing. Random packing has been created using the Discrete Element Method. The void size and shape are determined using a novel graph-based algorithm in the random 2D bed to study the liquid flow. The liquid flow behaviour has been studied in various conditions, like changing the packing size and bed height. This study confirms that the bed topology plays an important role in dictating the liquid flow behavior in a randomly packed bed.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top