ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Nucleation-controlled Selection of Metastable Ferrite in Solidification of Fe-22mass%Mn-0.7mass%C Alloy
Taka Narumi Makoto OhtaKengo FujitaRyoji KatsubeHideyuki Yasuda
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 64 Issue 12 Pages 1758-1767

Details
Abstract

The competition between the ferrite and austenite for nucleation in the melt can result in various solidification sequences in the Fe-based alloy. This study demonstrates that the austenite solidification was initiated by metastable ferrite nucleation followed by ferrite-austenite transformation even in Fe-22mass%Mn-0.7mass%C, where the austenite is the primary phase in equilibrium. Time-resolved X-ray diffraction measurements were performed using a time-resolved X-ray tomography apparatus to identify the metastable ferrite nucleation followed by the austenite solidification. X-ray radiography was performed to observe the microstructure evolution through the metastable ferrite nucleation followed by the austenite solidification. The metastable ferrite nucleation was preferably selected when the completely melted specimen was cooled. During subsequent cooling, the ferrite massively transformed to the austenite in the solid state, and multiple austenite grains were produced in a single ferrite grain through ferrite-austenite transformation. The ferrite-austenite transformation was immediately followed by the coarsening of multiple austenite grains. When the ferrite-austenite transformation occurred in a semisolid state consisting of the ferrite and liquid phase, the liquid phase, which isolated the austenite grains, suppressed the coarsening of austenite grain. The typical austenite grain size ranged from 100 to 500 µm. Thus, the present results suggest that the ferrite-austenite transformation following the metastable ferrite nucleation has the potential to control the austenite grain size in as-cast microstructures.

Fullsize Image
Content from these authors
© 2024 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top