ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Effect of Glycerol Mechanical Excitation on the Phase Evolution and Hydration Activity of Steel Slag
Peng Yao LiuJun Guo LiGuo Peng LiMeng Jie TaoXi Zhang Shuai ChaoYa Ling ZhangYi Ming DuanXin NingChong Yu NiuGuo Zhang Tang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 64 Issue 6 Pages 1089-1100

Details
Abstract

During the slow cooling process of steel slag, the crystals of inert mineral phases (C2F, RO phases) and active mineral phases (C2S, C3S) adhere and grow, and the irregular interlocking, embedding, filling, stacking, and coating between mineral phases seriously affect the hydration activity of active mineral phases in steel slag. Therefore, this article selects glycerol (C3H8O3) as a grinding aid to mechanically excite steel slag, exploring the mineral phase evolution and hydration activity excitation mechanism of steel slag under different process parameters. C3H8O3 mechanical excitation refined the steel slag particles, increased porosity, increased specific surface area, and caused peeling behavior between the rough surface active mineral phases (C2S, C3S) of the steel slag particles and the smooth surface inert mineral phase C2F with sharp angular protrusions. When the addition amount of C3H8O3 is 0.24 wt% and the ball milling time is 90 minutes, the mechanical excitation effect of steel slag is the best. The total mass fraction of C2S and C3S increases by 14.3 wt%, while the mass fraction of C2F decreases by 19.3 wt%. The mechanical excitation of C3H8O3 can cause the steel slag to germinate cracks at the interface of each phase, and a porous honeycomb structure composed of calcium hydroxide (CH) and calcium silicon hydrogel (C-S-H) appears during the hydration process, producing a large number of acicular ettringite (AFt), effectively improving the early hydration activity of steel slag.

Fullsize Image
Content from these authors
© 2024 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top