ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Direct Electrodeposition of High-Purity Iron from Fe2O3 in Molten Calcium Chloride
Zhongya PangJinjian LiShun ChenXueqiang ZhangFeng TianGuangshi LiShujuan WangXing YuChaoyi ChenQian XuXionggang LuXingli Zou
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 64 Issue 6 Pages 944-953

Details
Abstract

The low-cost production of high-purity metallic iron is of great practical importance. Herein, we report the direct production of high-purity metallic iron (99.92%) via a one-step electrochemical strategy in molten CaCl2–CaO–Fe2O3 system at 850°C. The involved CaO-assisted dissolution of Fe2O3 and electrodeposition mechanism were systematically studied, and the obtained iron products were characterized using scanning electron microscopy, inductively-coupled high-frequency plasma emission spectrometry, and glow discharge mass spectrometry. The results show that the crystalline iron products with tunable morphologies can be obtained in a controlled manner. The electrolysis parameters (voltage, current density, electrodeposition time and substrate material) have significant effects on the electrodeposition process and the characteristics of iron products. In particular, high-purity dense iron film can be directly electrodeposited at 15 mA∙cm−2, and its thickness increases considerably with increasing electrodeposition time. Furthermore, the as-deposited iron product can also be processed into bulk iron materials with high-purity of 99.995 wt.% by plasma melting for the potential applications. In general, this one-step electrodeposition process provides an acid-/alkaline-free strategy for the facile production of high-purity iron materials direct from Fe2O3.

Fullsize Image
Content from these authors
© 2024 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top