ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Measurement of Oil Film Thickness Distribution in Roll Bite during Cold Rolling Using Quantum Dots
Masahiro Shimura Daisuke KasaiTakayuki OtsukaNaoki YamashitaTomoko Hirayama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2025 Volume 65 Issue 1 Pages 50-61

Details
Abstract

Lubrication is critical to achieve stable rolling during the cold rolling of flat steel products. However, the oil film thickness distribution in the roll bite and its effect on the friction between the work roll and strip has not yet been clarified. This study aims to elucidate the relationship between the oil film thickness distribution and friction by focusing on the rolling oil viscosity and steel grades because they significantly affect the friction between the work roll and the strip. Rolling oil was prepared with quantum dots (QDs) as the fluorescent additive and used in rolling experiments to determine its distribution. Furthermore, cold rolling experiments were conducted using two types of oils with different viscosities and three steel grades: low-carbon steel (LCS), high-strength steel (HSS), and advanced high-strength steel (AHSS) with tensile strengths of 270, 590, and 1180 MPa, respectively. Subsequently, the oil film thickness distribution on the steel strip surface was visualized by fluorescence microscopy using QDs. The idea that the higher the tensile strength of the steel or the higher the oil viscosity, the wider the rolling oil distribution on the strip surface was demonstrated. The numerical analyses revealed that the rolling oil distribution on the steel sheet surface was wider for AHSS and HSS than that for LCS. The high surface pressure between the roll and the steel plate may have increased the oil leaching area by increasing the oil viscosity. These findings demonstrate that rolling oil permeation from oil pits reduces the friction between the work rolls and the strip.

Fullsize Image
Content from these authors
© 2025 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top