ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Effect of the Moisture Content of Coal Blends on Coke Structure and its Apparent Gasification Kinetics with CO2
Ziming WangKejiang LiJianliang ZhangXuehong ZhangGaifeng XueXitao ChenMinmin SunChunhe Jiang
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2020-009

Details
Abstract

In this work, the influences of moisture content of coal on the structure and reactivity of cokes were investigated by blending different proportion of dry coal (with < 2 wt.% moisture) and wet coal (with ~10 wt.% moisture) and analyzing the gasification of the produced coke. The results indicated the coke formed from dry coal has the highest specific surface area and thinner pore walls. The results of isothermal thermogravimetric method show that the order of gasification reactivity of bulk coke from different proportion of wet coal is: 0 wt.% wet coal, 100 wt.% wet coal, 60 wt.% wet coal and 30 wt.% wet coal. In order to eliminate the influence of diffusion on the gasification reaction, coke with a particle size fraction of less than 48 µm was used for the non-isothermal gasification reaction. Results show that the gasification reaction curves of four samples are similar in the gasification process. It was concluded from kinetics analysis that the volume reaction model is well fitted with the experimental data. The activation energy with the volume reaction model is 191.9, 203.1, 190.1, and 190.8 kJ/mol. It was concluded that the moisture content of coal has little effect on the activation energy of the gasification, while the coke gasification kinetics is mainly determined by the coke pore structures which influence reaction surface.

Content from these authors
© 2020 by The Iron and Steel Institute of Japan
feedback
Top