ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Influence of Micro-texture Distribution and Straining Direction on the Ridging of Ferritic Stainless Steels
Suresh KodukulaPentti KarjalainenDavid Porter
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2020-610

Details
Abstract

Ridging means the appearance of surface profile undulations, i.e. peaks and valleys, as a result of plastic strain. The reasons for the different ridging behaviour of industrially produced, stabilized ferritic stainless steel sheets (EN 1.4509) have been investigated after straining in the rolling and transverse directions with low and high resistance towards ridging. The evolution of macro-texture has been measured by X-ray diffraction (XRD) both before and after ridging tests in the rolling and transverse directions. The macro texture results showed that straining along the rolling direction strengthened the α fibre whereas the γ fibre was strengthened by grain rotations after straining along transverse direction. Electron backscatter diffraction (EBSD) imaging was used to establish the micro-textural variations over the thickness of the sheets among the high and low ridging materials. Mean orientations of individual grains determined from the EBSD data were utilized to calculate plastic strain ratio r-values by considering all slip systems weighted according to their Schmid factors. The calculated r-values were used to predict the ridging surface profile after straining along the rolling and transverse directions. The results demonstrated the influence of local variations in micro-texture on the severity of ridging.

Content from these authors
© 2021 by The Iron and Steel Institute of Japan
feedback
Top