ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Impacts of Blending Semi-coke in PCI coal on Grinding Efficiency and Blast Furnace Operation
Chong ZouNan YuDong LiangJiangyong HeRuimeng ShiMengmeng Ren
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2022-551

Details
Abstract

Semi-coke is a product of low-temperature pyrolysis by low-rank coal, with a composition similar to that of anthracite for pulverized coal injection (PCI). Herein, we investigated the differences in grindability and combustibility between semi-coke and anthracite, analyzed the compositional and microstructural characteristics related to the performance of semi-coke, and assessed the impacts on grinding efficiency and blast furnace operation after replacing anthracite for injection with two types of semi-coke. Semi-coke is rich in high-hardness quartz that is tightly bound to the carbon matrix, making the semi-coke particles very hard, with a high Hardgrove grindability index (HGI) and high abrasion index. The addition of semi-coke reduced the grinding efficiency of the mill and afforded large-sized milled particles. The developed pore structure of semi-coke can enhance kinetic diffusion, and semi-coke is less ordered than coal, thereby providing more reactive sites for combustion reactions. These two reasons cause the ignition temperature of semi-coke to be significantly lower than that of coal. The addition of semi-coke increased the PCI ratio, decreased the fuel ratio, improved the permeability of the blast furnace, decreased the sulfur content in pig iron and carbon content in blast furnace dust. The difference in grinding productivity between semi-coke and coal widens as grinding time increases, suggesting that the HGI method may overestimate the actual grindability of semi-coke. The feasibility of reducing the grinding energy by optimizing particle sizes of semi-coke and improving the grindability of semi-coke by using selected pyrolytic coal and adjusting the pyrolysis temperature was proposed.

Content from these authors
© 2023 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top