ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Effect of Hydrogen Addition on Softening and Melting Performance of Lump and Sinter Mixed Burden
Nathan BarrettSubhasish MitraSheng ChewDamien O’DeaTom Honeyands
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2023-190

Details
Abstract

Hydrogen-enriched blast furnace (BF) operation is currently being assessed to mitigate greenhouse gas emissions while the steelmaking industry transitions to low carbon emission technologies. Increasing the usage of lump ore in the BF also presents opportunity to decrease carbon emissions, as it can be directly charged to the furnace without agglomeration. Use of lump ore in modern blast furnace operations is facilitated by high temperature interactions with sinter. With more emphasis on hydrogen enrichment in BF operations, the behaviour of lump and sinter mixed burdens must be characterised under new conditions. In this study, 15% hydrogen is added to the standard gas conditions of a Softening and Melting (S&M) apparatus (replacing nitrogen). Analysis of auxiliary reactions such as the Boudouard Reaction and the Water-Gas Shift Reaction is presented and their impact on burden reduction and performance assessed. Results indicate that with the inclusion of hydrogen, the performance of sinter burden deteriorates, while lump burden shows significant improvement. Interaction between sinter and lump still occurred with the inclusion of hydrogen in the gas, and the mixed burden behaviour of 20% lump and 80% sinter fell between that of the individual burdens. From interrupted experiments, it is noted at high degrees of reduction, the lump burden forms a solid metallic layer which maintains its interparticle voidage at high temperatures, supressing exudation of liquid slag.

Content from these authors
© 2023 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top