ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Liquid-Liquid Phase Separation and Phase Distribution in CaO-P2O5-FeO Slag for Phosphorus Recovery
Yu-ichi Uchida Kenji NakaseKatsunori Takahashi
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2023-476

Details
Abstract

Supposing to utilize the slag with high P2O5 content as a new phosphorus resource produced from a novel steelmaking process, a fundamental investigation was carried out with particular focus on spontaneous liquid-liquid phase separation occurring in the system CaO-P2O5-FeO for effective phosphorus recovery. At 1773K, two types of phase separation, which is a double-layered or a dispersed structure of two liquid phases, were observed according to the bulk composition. The double layers separated vertically and consisted of the phase with higher P2O5 content over 40 mass%, and the phase with higher FeO content over 90 mass%. Such structure corresponds to the liquid-liquid separation in the compositional region which is located in higher P2O5 content (upper side) against the tie line between Ca3P2O8 – FeO apex on the isothermal section of CaO-P2O5-FeO ternary system. At 1673K, various separation was observed such as a double-layer or a dispersed structure of two liquid phases, and a coexistence of solid/liquid phases. The slag with the bulk composition lying in the upper two liquid region showed the double-layered structure, giving a promising result for phosphorus recovery through phosphate concentration. The condition for formation of double-layered structure was considered based on the index originally proposed for co-continuity in polymer blends processing, which consists of viscosity and volume fraction of the co-existing phases. The index was found to represent a specific condition for making co-continuous phases in this study and would be significant in view of effective phosphorus recovery.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top