ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Influence of silicon and tramp elements on the high-temperature oxidation of steel in direct casting and rolling processes
Georg Gaiser Peter PresolyChristian BernhardKerstin BaumgartnerSimon Grosseiber
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2024-072


Oxidation processes are unavoidable in continuous casting and further hot processing of steel. A deeper understanding of the occurring phenomena such as intergranular oxidation and liquid metal infiltration of grain boundaries is essential to continuously improve the quality of the products. In this study, oxidation experiments were performed with simultaneous thermal analysis for two thin slab casting and rolling applications under near-process conditions up to the point prior to the first reduction stage. The experiments were performed for two low-carbon steels contaminated with undesirable tramp elements (Cu, Sn, …). In addition, the two steels contain Silicon at different levels. The results show that for the "Endless Strip Production" process (ESP), intergranular oxidation is significantly less pronounced compared to a "Thin Slab Casting and Rolling process" with a gas-fired tunnel furnace (TSCR TF). Due to the short process time at high temperatures in the ESP process, hardly any liquid metal infiltration by copper appears. In low silicon steel, intergranular oxidation results from various oxides, and liquid metal infiltration appears simultaneously in the TSCR TF process. Furthermore, the yield loss from oxidation is significantly higher in the TSCR TF process. The change from a natural gas combustion atmosphere to a hydrogen combustion atmosphere further increases the oxidation rate and results in a higher mass loss.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
Previous article Next article