ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Stress and Plastic Strain Partitioning Behaviors and Those Contributions to Martensitic Transformation of Retained Austenite in Medium Manganese and Transformation-Induced Plasticity-Aided Bainitic Ferrite Steels
Tomohiko Hojo Motomichi KoyamaBakuya KumaiYutao ZhouYuki ShibayamaAyumi ShiroTakahisa ShobuHiroyuki SaitohSaya AjitoEiji Akiyama
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2024-268

Details
Abstract

Stress and plastic strain distributions and those partitioning behaviors of ferrite and retained austenite were investigated in the medium manganese (Mn) and the transformation-induced plasticity-aided bainitic ferrite (TBF) steels, and the martensitic transformation behaviors of retained austenite during Lüders elongation and work hardening were analyzed using synchrotron X-ray diffraction at SPring-8. The stress and plastic strain of retained austenite and volume fraction of retained austenite were remarkably changed during Lüders deformation in the medium Mn steel, implying that the medium Mn steel possessed inhomogeneous deformation at the parallel part of the tensile specimen. On the other hand, the distributions of the stress, plastic strain and volume fraction of retained austenite were homogeneous and the homogeneous deformation occurred at the parallel part of the tensile specimen at the plastic deformation regime with work hardening in the medium Mn and TBF steels. The martensitic transformation of retained austenite at Lüders deformation in the medium Mn steel was possessed owing to the application of high stress and preferential deformation at retained austenite, resulting in a significant increase in the plastic deformation and reduction of stress in the retained austenite. The martensitic transformation of retained austenite at the plastic deformation regime with work hardening was induced by the high dislocation density and newly applied plastic deformation in retained austenite in the medium Mn steel whereas the TBF steel possessed gradual transformation of retained austenite which is applied high tensile stress and moderate plastic deformation.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top