Abstract
The turbulence structure of a round air-water vertical bubbling jet generated in a cylindrical bath was investigated using a two-channel laser Doppler velocimeter. In the central part of the jet, turbulence production was much greater than for a single-phase water jet. This difference was mainly attributable to additional turbulence production in the wake of bubbles rising upward. Turbulent motions were classified into four distinct categories. The contributions of each category to the turbulence kinetic energy and the Reynolds shear stress were determined based upon a conditional sampling method.