ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Effect of Nitrogen Alloying on the Pitting of Type 310 Stainless Steel
Hitoshi YashiroDaichi HirayasuNaoaki Kumagai
Author information
JOURNAL OPEN ACCESS

2002 Volume 42 Issue 12 Pages 1477-1482

Details
Abstract
The effect of nitrogen alloying on the pitting behavior of type 310 stainless steel has been investigated through measurements of pitting potential (Epit) as a function of temperature and concentration of NaCl (CNaCl). Nitrogen was effective to shift Epit to nobler direction especially at temperatures below critical one. The critical pitting temperature was defined as the temperature below which the usual linear relationship between Epit and logarithm of CNaCl did not stand. Alloying the stainless steel with nitrogen increased the critical pitting temperature. Below the critical temperature where Epit did not follow the usual dependency on CNaCl, pitting was retarded most effectively by nitrogen except when CNaCl was so high that Epit lay below ca. 400 mV. Although the whole mechanism of nitrogen is not still clear, nitrogen is most likely to suppress acidification of pitting site through formation of ammonium ion. Nitrogen in a metal matrix and nitrate in a solution seemed to have a common feature with respect to the potential dependency of inhibition efficiency. The fact that nobler potentials were more favorable for both nitrogen in metal matrix and nitrate in a solution for inhibition seemed to indicate that oxidation of nitrogen to nitrate might also be involved in the inhibition mechanism.
Content from these authors
© The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top