ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Microstructure Evolution Mechanism in Iron Aluminides/CrMo Steel Composite Prepared by Solid State Bonding
Naoya MasahashiShuji Hanada
Author information
JOURNAL OPEN ACCESS

2004 Volume 44 Issue 5 Pages 878-885

Details
Abstract
This work addresses a mechanism of columnar microstructure evolution during diffusion bonding in a composite of iron aluminide and CrMo steel focusing on the role of alloying on microstructure. Columnar microstructure develops in the steel side of diffusion couples of iron aluminide and Fe-X (X=Cr, Mo) steel, when the steel composition is in the gamma phase at the bonding temperature. This is consistent with the proposed model for columnar microstructure evolution, which contributes to bonding strength between iron aluminide and steel. Interdiffusion coefficient at the Matano interface decreases with increasing the concentration of alloying elements in steel, and its decrease rate is higher for Mo than for Cr. The columnar grains in the steel side of the couple are longer than expected by chemical composition analysis, and their lengths increase with the interdiffusion coefficient. Microstructure evolution mechanism is discussed in terms of the kinetics of nucleation and subsequent grain growth during diffusion bonding.
Content from these authors
© The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top