Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Distributed Power Allocation for Multiuser Two-Way Relay Networks Using Stackelberg Game
Fu JiangChaoliang ZhuJun PengYong HeShuo LiWeirong Liu
Author information
JOURNAL OPEN ACCESS

2014 Volume 18 Issue 1 Pages 48-55

Details
Abstract

Recently, two-way relay networks have been regarded as a promising technique that can improve bandwidth utilization. In this paper, the power allocation problem for multiuser two-way relay networks with amplify-and-forward protocol is investigated. In order to describe the self-interestedness of nodes in two-way relay networks, a two-level Stackelberg game is introduced to jointly optimize the benefits of the source pair and the relay nodes, where the relay nodes are modeled as leaders and the source pair is modeled as a follower. To facilitate the power allocation process, a distributed game-theoretic power allocation algorithm is proposed. Then, the existence and optimization of the Stackelberg equilibrium for the proposed power allocation algorithm is proven. The convergence of the presented algorithm is also analyzed by proving that price update is a standard function. Simulation results indicate that the proposed power allocation algorithm can improve energy utilization by jointly optimizing the utilities of both source pair and relay nodes.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top