Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Bag-of-Bounding-Boxes: An Unsupervised Approach for Object-Level View Image Retrieval
Kanji TanakaMasatoshi AndoYousuke Inagaki
Author information
JOURNAL OPEN ACCESS

2014 Volume 18 Issue 5 Pages 784-791

Details
Abstract

We propose a novel bag-of-words (BoW) framework for building and retrieving a compact database of view images for use in robotic localization, mapping, and SLAM applications. Unlike most previous methods, our method does not describe an image based on its many small local features (e.g., bag-of-SIFT-features). Instead, the proposed bag-of-bounding-boxes (BoBB) approach attempts to describe an image based on fewer larger object patterns, which leads to a semantic and compact image descriptor. To make the view retrieval system more practical and autonomous, the object pattern discovery process is unsupervised through a common pattern discovery (CPD) between the input and known reference images without requiring the use of a pre-trained object detector. Moreover, our CPD subtask does not rely on good image segmentation techniques and is able to handle scale variations by exploiting the recently developed CPD technique, i.e., a spatial random partition. Following a traditional bounding-box based object annotation and knowledge transfer, we compactly describe an image in a BoBB form. Using a slightly modified inverted file system, we efficiently index and/or search for the BoBB descriptors. Experiments using the publicly available “RobotCar” dataset show that the proposed method achieves accurate object-level view image retrieval using significantly compact image descriptors, e.g., 20 words per image.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top