Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Selected Papers from SCIS&ISIS2012
Hierarchical Bayesian Model for Diffuse Optical Tomography of the Human Brain: Human Experimental Study
Okito YamashitaTakeaki ShimokawaTakashi KosakaTakashi AmitaYoshihiro InoueMasa-aki Sato
Author information
JOURNAL OPEN ACCESS

2014 Volume 18 Issue 6 Pages 1026-1033

Details
Abstract

Diffuse optical tomography (DOT) is an emerging technology for improving the spatial resolution of conventional multi-channel near infrared spectroscopy (NIRS). The hemodynamics changes in two distinct anatomical layers, the scalp and the cortex, are known as the main contributor of NIRS measurement. Although any DOT algorithm has the ability to reconstruct scalp and cortical hemodynamics changes in their respective layers, no DOT algorithm has used a model characterizing the distinct nature of scalp and cortical hemodynamics changes to achieve accurate separation. Previously, we have proposed a hierarchical Bayesian model for DOT in which distinct prior distributions for the scalp and the cortical hemodynamics changes are assumed and then verified the reconstruction performance with a phantom experiment and a computer simulation of a real human head model (Shimokawa et al. 2013, Biomedical Optical Express). Here, we investigate the reconstruction accuracy of the proposed algorithm using human experimental data for the first time. We measured the brain activities of a single subject during a finger extension task with NIRS and fMRI. Our DOT reconstruction was compared with the fMRI localization results. Consequently, a remarkable consistency between fMRI and our DOT reconstruction was observed both in the spatial and temporal patterns. By extending the advantages of NIRS such as low running cost and portability with our DOT method, it might be possible to advance brain research in a real environment, which cannot be done with fMRI.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top